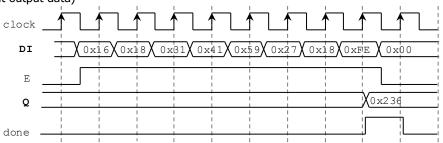

Homework 1

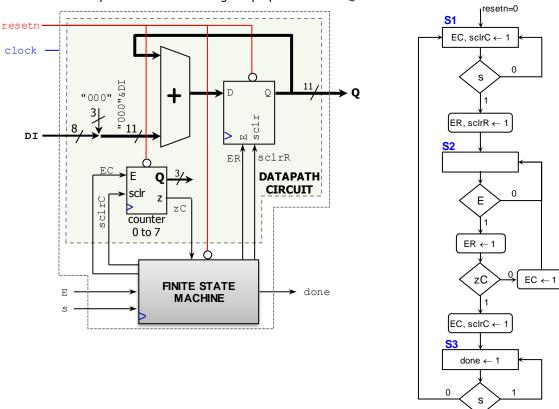
(Due date: May 19th)

Presentation and clarity are very important! Show your procedure!


PROBLEM 1 (40 PTS)

- Bit Counting (or "Counting 1's") Circuit: It counts the number of bits in register A that has the value of '1'. The digital system is depicted below: FSM + Datapath. Example: For n = 8: if A = 00110110, then C = 0100.
 - ✓ m-bit counter: If E = sclr = 1, then Q ← 0. If E = 1, sclr = 0, then Q ← Q+1
 - ✓ Parallel access shift register: If E = 1, $s_l = 1 \rightarrow \text{Load}$. If E = 1, $s_l = 0 \rightarrow \text{Shift}$.
- Complete the timing diagram where *n* = 8, *m* = 4.

PROBLEM 2 (60 PTS)


- VHDL Description of Accumulator of eight 8-bit unsigned integer numbers.
- **Operation**: The circuit starts reading 8-bit data when the s signal (usually a one-cycle pulse) is asserted. The values then are read when the enable signal (E) is asserted. When 8 values have been read, the done signal is asserted to indicate that the accumulated result in 11-bit output Q is valid.
 - ✓ Inputs: s (start signal), DI (8-bit input data), E (enable for input data)
 - ✓ Outputs: Q (11-bit output data)

- The figure depicts the digital system: the FSM (in ASM form) and the Datapath circuit.
 - ✓ Write a structural VHDL code. You should use the following parametric components (available <u>here</u>):
 - *n*-bit register with enable and synchronous clear: my_{rege} . Assign parameter N = 11.
 - Counter modulo-N with enable and synchronous clear: my_genpulse_sclr. Assign parameter COUNT = 8.
 - *n*-bit adder/subtractor: my_addsub. Assign parameter N = 11.

Then, write code for the FSM. Finally, integrate all components into a top file (named my_accu.vhd). Make sure to include the following library declarations: 'use ieee.math_real.log2;' 'use ieee.math_real.ceil;'

- ✓ Use the provided testbench (tb_my_accu.vhd) and simulate the circuit (Behavioral Simulation). The testbench feeds two sets of 8-bit data. Verify that the simulation results are correct.
 - 1st Set: 0x19, 0xFA, 0xCA, 0xDE, 0xFA, 0xCE, 0xB0, 0x0C. The result on Q (when done=1) should be 0x53F.
 - 2nd Set: 0x16, 0x18, 0x31, 0x41, 0x59, 0x27, 0x18, 0xFE. The result on Q (when done=1) should be 0x236.
- ✓ Upload (as a .zip file) the following files to Moodle (an assignment will be created).
 - VHDL code files and testbench.
 - A screenshot of your simulation showing the proper results on Q.

